Sums of Magnetic Eigenvalues Are Maximal on Rotationally Symmetric Domains

نویسندگان

  • RICHARD S. LAUGESEN
  • JIAN LIANG
چکیده

The sum of the first n ≥ 1 energy levels of the planar Laplacian with constant magnetic field of given total flux is shown to be maximal among triangles for the equilateral triangle, under normalization of the ratio (moment of inertia)/(area) on the domain. The result holds for both Dirichlet and Neumann boundary conditions, with an analogue for Robin (or de Gennes) boundary conditions too. The square similarly maximizes the eigenvalue sum among parallelograms, and the disk maximizes among ellipses. More generally, a domain with rotational symmetry will maximize the magnetic eigenvalue sum among all linear images of that domain. These results are new even for the ground state energy (n = 1).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sums of Laplace Eigenvalues — Rotationally Symmetric Maximizers in the Plane

The sum of the first n ≥ 1 eigenvalues of the Laplacian is shown to be maximal among triangles for the equilateral triangle, maximal among parallelograms for the square, and maximal among ellipses for the disk, provided the ratio (area)/(moment of inertia) for the domain is fixed. This result holds for both Dirichlet and Neumann eigenvalues, and similar conclusions are derived for Robin boundar...

متن کامل

Power Sums of Hecke Eigenvalues and Application

We sharpen some estimates of Rankin on power sums of Hecke eigenvalues, by using Kim & Shahidi’s recent results on higher order symmetric powers. As an application, we improve Kohnen, Lau & Shparlinski’s lower bound for the number of Hecke eigenvalues of same signs.

متن کامل

Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices

This paper gives max characterizations for the sum of the largest eigen-values of a symmetric matrix. The elements which achieve the maximum provide a concise characterization of the generalized gradient of the eigenvalue sum in terms of a dual matrix. The dual matrix provides the information required to either verify rst-order optimality conditions at a point or to generate a descent direction...

متن کامل

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Let  be a sequence of arbitrary random variables with  and , for every  and  be an array of real numbers. We will obtain two maximal inequalities for partial sums and weighted sums of random variables and also, we will prove complete convergence for weighted sums , under some conditions on  and sequence .

متن کامل

A ug 1 99 7 Kinematic self - similar locally rotationally symmetric models ∗

A brief summary of results on kinematic self-similarities in general relativity is given. Attention is then focused on locally rotationally symmetric models, and coordinate expressions for the metric and the kinematic self-similar vectors are provided. Einstein's field equations for perfect fluid models are investigated and all the homothetic perfect fluid solutions admitting a maximal four-par...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011